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Abstract. We carry out path integral quantisation of the superparticle action in D- 
dimensional spacetime using the FV theorem. Having fixed the gauge, we obtain a closed 
form for the propagator by restricting the region of integration to a single covering of 
moduli space. We present specific calculations for D = 2 and then generalise to D = 2, 3, 
4 mod 8. 

1. Introduction 

An understanding of the covariant quantisation of the superparticle should point the 
way to methods for quantising the superstring (where the need to explicitly separate 
the first- and second-class components of the fermionic constraints causes problems). 
Indeed Nissimov et a1 have applied harmonic superspace techniques, developed in 
quantising the superparticle [ 11, to covariantly quantise the superstring [2]. Here we 
present a covariant quantisation scheme for the superparticle that does not require a 
consideration of harmonic superspaces. Our path integral approach to the superparticle 
is similar to that of Hori et a1 [3]. We separate the fermionic constraints into 
non-covariant components and quantise the theory using the BFV path integral (see 
[4]). With a non-covariant gauge choice we obtain a manifestly covariant path integral 
and show that our region of integration reduces to a single cover of Teichmuller space. 
We then obtain the propagator by applying Govaerts’ argument [SI and restricting the 
region of integration to a single cover of moduli space. 

Our superparticle action is [6] 

where e is a world line einbein, g4 is the Dirac adjoint of a Majorana fermion e,, c a b  

is the charge conjugation matrix and r$, are the Dirac matrices. The action (1) is 
obtained from a more general action [7] by implementing the Majorana condition, 
e, = c a b & .  Our calculations are therefore applicable to spacetimes of dimension 2, 3 
and 4 modulo 8. Our dynamical variables are taken to be x*, p*,  e, re, 6, and pa 
where we define 

Application of Dirac’s constraint algorithm [8] to (1) gives us the constraints Ti, 
i = 1,2,3: 

T I = v e = O  T2=p*pp 2 0  T,, = p a  - iflabcbc8c 0. (3) 

0305-4470/89/ 153149+ 10$02.50 @ 1989 1OP Publishing Ltd 3149 



3150 S Oates 

The Hamiltonian on the surface of constraint, H , ,  and the total Hamiltonian, HT, are 

Ho=O T - 2ePpPp + A,T, i = l , 2 , 3  (4) H -1 

where the A ,  are Lagrange multipliers for the constraints T,. Defining the Poisson 
brackets 

{ x p ,  PYIPB = 8:: {e, Te,)PB= I g a ,  P b ) = - 8 a b  ( 5 )  

{T , ,  q)PB=O i = 1 , 2  j = l , 2 , 3  T3a T3 b PB = 2ipbbcCca. (6) 

as the only non-zero brackets, we can form the Poisson brackets between the constraints: 

Here we see the Poisson bracket of two supersymmetry operators (the fermionic 
constraints T3a)  gives a spacetime translation operator, as should be the case for a 
supersymmetric theory (see [ 9 ] ) .  Now, the rank of @C on the surface of constraint is 
equal to the number of second-class components of T3, since second-class constraints 
are defined to be those whose Poisson brackets with each other do not vanish, even 
weakly. In order to apply the FV theorem, the first- and second-class components of 
T3a must be separated. The explicit separation of these components is relatively 
straightforward in two dimensions, so we use the example of 0 = 2  to demonstrate 
our method. 

2. The propagator for d = 2  

We choose the following representation for the r$, matrices in 2~ spacetime: 

ro=( 0 1  ) r l=( i  O )  
1 0  0 -i 

such that 

Our metric is 

g..=(1 0 -1 0). 

With this choice of Dirac matrices, elementary row operations give 

rank(@C) - 5  dim(@C) = 1. (10) 

By a theorem given by Sohnius [9] we can show that this result is actually independent 
of our choice of the r''. So T3, has one first-class and one second-class component. 
Labelling the components of T3, as T, and T p ,  we find that -T, + T' is second class 
and 

(11) 

is first class. We use the Heaviside functions, O(p),  to ensure that our separation of 
T,, into first- and second-class components is valid on both branches of the mass 

(iT, - Tp)O(pop')+( T, -iTp)O(-popl) 
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shell; p o  = p 1  and p o  = - p ' .  Let us then relabel our constraints: 

TI = re = 0 ( 1 2 ~ )  

T2 = psps = 0 (126) 

T3=(iT,-  T,)O(pnp')+(T, -iTp)O(-pnp')==O (12c) 

T4=-T0+ Tp = O  (12d) 

It is interesting to note that the fermionic second-class constraint T4 is its own canonical 
conjugate, so we have a theory with a single second-class constraint. Each second-class 
constraint which occurs in a theory implies one of the theory's phase space variables 
is redundant. The D = 2 superparticle is therefore a theory with an odd-dimensional 
phase space. This raises certain interpretational difficulties which are briefly mentioned 
below. Due to the presence of the second-class constraint, T4, we must set up the 
Dirac bracket and, in obtaining the quantum theory, work with this rather than the 
Poisson bracket. For two functions A and B the Dirac bracket is 

(14) 
With Poisson brackets replaced by Dirac brackets, T4 = 0 is taken as a strong equation 
rather than a weak constraint equation. We now write the total Hamiltonian as 

HT=AiT, i = 1,2, 3 (15) 
with suitably redefined A * .  Notice that, since Ho = 0, our equations of motion will be 
invariant under reparameterisations of the time evolution parameter r -f( T). Consider 
some dynamical variable g (  7): 

{A, B)DB={A, B)PB-{A, T4}PB(4iP1)-'{T4, B}PB. 

Notice also that the Lagrange multipliers A ,  ( T) transform under reparameterisations 
as einbein fields. 

We now quantise the superparticle by following the prescription given in [4]. 
Extend the phase space by allowing the multipliers A ,  ( i  = 1,2 ,3)  to become dynamically 
active. Introduce momenta, U,, conjugate to the A ,  and constrain them to be zero; 
U, =O. Introduce ghost fields 77, and conjugate momenta i j ,  of opposite statistics to 
the T, and similarly ghosts and momenta 5, and for the U,. So we have the superlarge 
phase space 
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where ci is the Grassman parity of the variable with subscript i. Consideration of the 
algebra of the constraints ( u i ,  T i )  ( i  = 1 , 2 , 3 )  under the Dirac bracket operation allows 
us to construct the BRST generator R: 

(19) = vi5i + T T i  + f j 2 ~ 3 ~ 3 / ~ ' .  

Notice that R is nilpotent, {R, a},, = 0. 
With the following BRST invariant boundary conditions 

X @ ( Ti )  = Xf X @ ( T f ) = X F  T i ( 7 i ) = O =  t 7 i ( T f )  

i = 1,2 ,3  

where 9 is a ghost number -1  gauge Fermion. Notice that we can write 

where 4 is some Fermionic variable, and 

where 6 is Bosonic. The interpretation of (21) in terms of infinite-dimensional integrals 
by taking time slices is given in the appendix. 

The Fradkin-Vilkovisky theorem tells us that for suitably chosen BRST invariant 
boundary conditions 2, is independent of the choice of 9. Govaerts [5] explains that 
the FV theorem cannot be quite correct. Govaerts restates the FV theorem as follows: 
'the BFV path integral does not specifically depend on a given gauge fixing function, 
9, but only on its gauge-equivalence class.' A gauge-equivalence class of gauge fixing 
functions consists of all the 9 that determine the same covering of Teichmuller space. 
Govaerts describes a gauge fixing function 9 as good if it leads us to a single covering 
of Teichmuller space. Nelson [ 111  gives the definition of Teichmuller space, in the 
context of string and point particle theories, as 

{metrics} 
{rescalings} x {connected diff eomorphisms} * 

Since our multipliers hi(  T) transform under world line diffeomorphisms T +f( T) accord- 
ing to the einbein transformation rule 

(24) Teich = 
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and since the superparticle has no Weyl rescaling symmetry (see [6]), the Teichmuller 
space for the superparticle is 

{ A i ( T ) l  Teich = 
{connected diff eomorphisms} ’ 

The parameters ci = dTAi( 7 )  are invariant under the connected diffeomorphisms 
T + ~ ( T )  and so can be used as Teichmuller parameters for the superparticle. Choosing 
a gauge for any theory for which Ho=O is equivalent to choosing a specific time 
evolution parameter,f(T), and so, by (25), is equivalent to choosing a set of multipliers, 
A i ( 7 ) .  A gauge for which {Q, O}, ,  is not a function of the ui yields a functional delta 
function S[A,], on integrating over the ui .  Such a gauge is called a proper time gauge. 
Working in a gauge of this sort we have ci = A y (  Tf - T ~ ) .  As ( Tf- T ~ )  goes from -a to 
00 so does ci. With A i  an element of a Grassman algebra, G, our Teichmuller space 
can be seen to be R2xg,  g = { ( T f - ~ i ) ~ y :  A ~ E  G, ( T f - - J E R ) .  

We consider the gauge choice 

where F ( A 3 )  is a Fermionic function, and make the changes of variables 

5’ --* Y5i  51 + 511 Y i i l +  YiiI 771’771/Y (28) 

which have a super-Jacobian equal to 1 and then let y + 0 once 9 has been substituted 
into Z,.  Integrating over 4 and 5 and dropping the primes on the transformed 
variables, we have 

2- [ [ d x w I [ d P ” I [ d e I [ d ~ e I [ d 8 , I [ d p a I [ d h i l [ d 7 7 i I [ d ~ i I [ d ~ i I [ d ~ I ~ [ ~ ( ~ ~ ) I  

- is I 51 - 75252 + A2pwp” + A 1 re . (29) 1) 
Notice that (29) is covariant; the steps implicit in (22), (23) and the gauge choice (27) 
are equivalent to the procedure of ‘covariantisation’ described in [3]. 

We evaluate the integrals in (29) by taking ‘time slices’ (see, for example, [12]) as 
defined in the appendix or we could use [13] as a source of standard integrals. In 
particular the integral 

can be rewritten as 

Expanding e(A<) as e(A$) = a, + bJAJ3, where aJ is fermonic and bJ is bosonic, and 
then integrating, gives us 



3154 S Oates 

J --a) J -a 

where the index 0 indicates a value of a field which is independent of T. 

2- fl (c-eb) 5-:dc18(cl) 5 dc3c3 1‘ dp; e x p [ i ( x ~ - x ~ ) p o ” ]  

In terms of the Teichmuller parameters c, (30) becomes 
P 

a = a  --3c 

X 

x 5 dc, exP(ip;ptc2) 
-a 

where the undetermined constant 
2 n  2 n  

lim A’”+’ fl a$, 
n - x  j = O  r=O 

i#j 

has been absorbed into the normalisation (since different values of this constant lead 
to the same covering of Teichmuller space). So the gauge choice (27) is a good gauge 
choice; it results in a single covering of Teichmuller space. 

The correct form of 2 is obtained by restricting our integrals to a single cover of 
moduli space. In this case 

{ A i ( T ) }  moduli space = 
{all diffeomorphisms}’ 

We can see that our gauge fixing is not complete since we have not taken into account 
the disconnected diffeomorphisms which reverse the world line’s orientation and 
interchange its end points. These leave the action invariant. Restricting our integrals 
to moduli space quotients out this extra symmetry. This disconnected diffeomorphism, 
which can be expressed as ? e r f ,  dT+ -dr, maps ci onto - c i .  So the modular group 
is Z2 and moduli space is (R2 x g)/Z2 such that 

is the required superparticle propagator. Carrying out the c2 integration we get a 
Feynman-like propagator for the superparticle: 

where E is a positive parameter. 
It was mentioned above that for D = 2 the superparticle Lagrangian ( 1 )  describes 

a theory in an odd-dimensional phase space. The propagator (34) was constructed by 
applying the recipe given by Fradkin and Fradkina [lo]. If we had eliminated the 
single redundant variable from our calculations before implementing the FV theorem 
there would not have been any obvious way to construct the path integral. Since 
second-class constraints are regarded as strong equations (as opposed to weak 
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equations) this would, however, have been an equally valid way to approach the 
problem of quantising the system. The propagator (34) can, however, be used to 
calculate transition amplitudes between physical states just as if it were a transition 
kernel (see the discussion below and also Teitelboim [ 141). Henneaux and Teitelboim 
[ 151 refer to propagators such as (34) as symbols of the evolution operator. It is shown 
below for the D-dimensional case that a propagator of the form of (34) maps (un)phy- 
sical states into (un)physical states. The similarity between the heat kernel obtained 
from (34) 

h(x,, Ga)  - lim z(x:, 61, x: E )  (35 )  
85’ 8: 
x:-x: 

and the Witten index in two-dimensional superspace [ 161 

should also be noted. 

3. The propagator for D =2, 3, 4 modulo 8 

Moving to the calculation of the superparticle propagator in spacetimes of D 
dimensions we find that in spaces of D = 4  or more we no longer have to deal with 
the difficulties of odd-dimensional phase spaces. In D dimensions we have 

(37) 

where N = D for even D and N = ( D  - 1 )  for odd D. So there will exist a separation 
of the components of T3, into an equal number of first-class ( T A ,  A = 3 , .  . . , 2+42”2) 
and second-class (Ta, ct =3+f2”’, . . . , 2+2””2) constraints. Such a separation will 
be achieved as follows: 

1 N / 2  rank( pC) = f dim(gC) = 92 

where Aab is an invertible matrix of constant coefficients. The generalisation of (14) 
will be 

{A,  B ) D B = { A i  B } P B - { A ,  Tm)PB{Ta, Tp} i l ! l {T@,  B ) P B *  (39) 
As before, we now regard T, = O  as strong equations and carry out BFV quantisation 
in terms of the first-class constraints TA = 0. Our extended phase space is 

(40) {xlr9pfi, e, ~ e - 9  g a ,  pa, A,, vi, 71, i i i ,  C I ,  S;> i = 1 , 2 , 3 , .  . . , 2 + 9 N / 2  

and we have the constraints G, = (U,, T,) .  The Dirac bracket algebra of the constaints 
is 

{G,, GV}DB = UrLG, = ~ “ , ~ + 2 + ( ~ / 2 ) 2 ~ / ’ ~ r . . ~ + ~ + ( 1 / 2 ) ~ ~ ” Y ~ ~ G w s w , , + ~ + ( ~ / * j 2 ” ’ .  (41) 

(42) 

A separation of the components of T3. such that 
y 4 + ( 1 / 2 ) 2 ’ ”  y 4 + (  1 / 2 ) 2  ‘/ 

y % 3 = ( o ,  O, * * 7 AB f .  * ‘ 9 o,o> AB = X A B (  P) 
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will always be possible since {TA,  TB}DB is strongly equal to some function of p but 
weakly vanishing and  therefore also strongly equal to a linear combination of the 
first-class constraints. As before, we can now write down the BRST generator R 

(43) 1 N I 2  R = Ui& + Tisi + 2772 - x ABTB77A i =  1 , 2 , .  . . , 2+22  

and again check that {R, = 0. 
The BFV path integral is now 

which is an obvious generalisation of (21). We have the boundary conditions (20) but 
with i = 1 , 2 , .  . . , 2 + f 2 N / 2  and make suitable generalisations of (22) and (23). Making 
the gauge choice 

*= ? , A l +  jj2A2+- +40LF(Aa-(1,2~2\ 2)f1-5cr(irl{TOL, T~}i;I-&,pd)’ i l l  
4aTOLii2 

T2 .rr, 
(45) 

with the change of variables (28) gives, in the limit y + 0, 

z - 1 [ dxp I [ d p  fi  I [ de l  [ d r e  I [d go I [dpo I [d  Ai  I [dui I [d 7 7 1  I [d i l l  I d 5 1  I [ d c I 
X 6[F(A,)] eXp i dT{ippp + er, + iopo + AlU, 

A ( r 
+ %75, + l lC - f i l i i  + A i r ,  - i j?52+AzPppp . (46) 

All these integrals can be carried out by analogy with the D = 2 case and  we find the 
following integral over Teichmuller space 

9 

where the c, are Teichmuller parameters defined as above. Restricting the region of 
integration to a single cover of moduli space gives 

This is a standard integral (see Gel’fand and  Shilov [7]) which for the specific metric 

(49) gP” = ( + l ,  - 1 ,  - 1 , .  . . , - 1 )  

is given by 

( exp- i (D-  1 ) ~ / 2 ) 2 ~ - ’ r ~ ’ ~ r ( D / 2 -  1 )  2 \  2 

z -  (ea -#o)  
o = l  ((x: - x r ) 2 - i & ) D / 2 - 1  
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4. Discussion 

In the physically interesting cases of D = 4 and D = 10 we do not have to deal with 
an odd-dimensional phase space but (48) still cannot be regarded as a transition 
amplitude between observable states. The propagator we have obtained is an amplitude 
between states in superspace. It is not complex valued, as should be the case for a 
quantum mechanical amplitude. Function (48) is a Grassman-valued function but can, 
however, be used to calculate transition amplitudes by identifying it as a transition 
kernel and expressing a complex-valued amplitude (xFI $I) as 

( x F / $ ~ ) =  d Z  d C  dx: dXLXEZ(Z9 x:, e', x:)41. (51)  

See Pugh [18] for a discussion of this point. 
We can demonstrate the operation of our propagator by studying its effect on 

physical states. In an operator approach to the quantisation of constrained systems 
physical states are those which are annihilated by the first-class constraints and the 
second-class constraints are taken as relationships between quantum operators. Apply- 
ing these considerations to the superparticle, let us define a wavefunction x(ga,  xp);  
then, if 

T,x=O i = 1 , .  , . , 2 + f 2 N / 2  ( 5 2 )  
x describes a physical state of the system. Consider a state x(Ra, x l ) ,  then our 
propagator gives us the state x (  E,  x:): 

x(  E, x:) = dg: dx!+Z( gc, xz,  e', xL)x( e', xh). (53) i 
We find that 

dpo d x L Z ( Z ,  x:, e'b, x!+)T,x(pa, x:) (54) 

so we see that 

T#X( Pu, x:, = o e  T,x( g:, X L )  = 0 

and 
( 5 5 )  

i.e. our propagator maps (un)physical states into (un)physical states. 
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Appendix 

If path integrals are to be understood as the continuous limit of a discrete set of 
one-dimensional integrals then 2, as given in (21) can be rewritten in terms of 
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[ 10 [ 1 1  [ 32 ..................... [ 1 2 n  C I ~ n t l  

.................... { 10 { 1 1  { }z  { 1 2 n  

Figure 1. One-dimensional lattice for functional integral variables. [ ] represents the 
variables [x,, e, go, U , ,  v,, E1 and I } represents { P ~ ,  re, P.. A , ,  f , ,  5,). 

discretised phase space variables. Set up a lattice of 2 n  + 2 sites with an interval A 
between neighbouring sites. (The lattice is chosen to have 2 n  + 2 sites so that all parts 
of the measure have a definite Grassman parity as n + 00.) Attach the extended phase 
space variables (21) to the lattice. The variables subject to boundary conditions are 
placed on the sites with their conjugate variables placed between sites, as shown in 
figure 1. The path integral (21) is then expressible in terms of the lattice variables as 
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